DISCOVER.
Mastering Molecular Science for Future Energy Solutions

Products for Oilfield Applications
Huntsman Performance Products
Global Technology

USA
- Chocolate Bayou (Texas)
- Conroe (Texas)
- Dayton (Texas)
- Freeport (Texas)
- Geismar (Louisiana)
- Pensacola (Florida)
- Port Neches (Texas)
- The Woodlands (Texas)

South America
- São Paulo (Brazil)

Europe
- Barcelona (Spain)
- Castiglione (Italy)
- Everberg (Belgium)
- Jubail (Saudi Arabia)
- Llanelli (United Kingdom)
- Petfurdo (Hungary)
- Saint-Mihiel (France)

APAC
- Ankleshwar (India)
- Botany (Australia)
- Brooklyn (Australia)
- Jurong (Singapore)
- Mumbai (India)
- Shanghai (China)
- Singapore (Singapore)
Huntsman Performance Products (Huntsman) is a leading global producer of intermediate chemistries and technologies that add value to customers worldwide. Huntsman products are used in a variety of applications throughout the oil production industry — from production chemicals, such as corrosion inhibitors, demulsifiers and paraffin dispersants; to drilling additives; cementing super plasticizers and repair systems for cementing failures.

With growing concerns about energy security, Huntsman’s chemistries are helping to optimize exploration and production of hydrocarbons. Huntsman offers an outstanding range of specialized technologies, world-scale manufacturing, a global distribution network and in-depth understanding of the oil industry’s regulatory compliance issues, through the Company’s Regulatory and Environmental Health & Safety (EH&S) departments.

Huntsman’s global manufacturing footprint and experience also allows the Company to provide customized products manufactured under a non-disclosure agreement.

By taking a holistic, full process approach from product concept through to commercial large-scale production, the Company is well-placed to deliver proven and sustainable oilfield solutions.
Huntsman Chemistry Overview

<table>
<thead>
<tr>
<th>Generic</th>
<th>Chemistry</th>
<th>Huntsman Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amines</td>
<td>Alkanolamines</td>
<td>MEA, DEA, TEA, DMEA, MDEA, MMEA, AEEA, DGA® Agent</td>
</tr>
<tr>
<td></td>
<td>Morpholines</td>
<td>Morpholine, N-methylmorpholine, N-ethylmorpholine, N-methylmorpholine Oxide</td>
</tr>
<tr>
<td></td>
<td>Substituted Propylamines</td>
<td>DMAPA, MOPA, APM</td>
</tr>
<tr>
<td></td>
<td>Ethyleneamines</td>
<td>EDA, DETA, TETA, TEPA, AEP, Ethyleneamine E100</td>
</tr>
<tr>
<td></td>
<td>Polyoxyalkyleneamines</td>
<td>JEFFAMINE® Amines</td>
</tr>
<tr>
<td>Carbonates</td>
<td>Ethylene Carbonate</td>
<td>JEFFSOL® EC</td>
</tr>
<tr>
<td></td>
<td>Propylene Carbonate</td>
<td>JEFFSOL® PC</td>
</tr>
<tr>
<td></td>
<td>Butylene Carbonate</td>
<td>JEFFSOL® BC</td>
</tr>
<tr>
<td></td>
<td>Glycerine Carbonate</td>
<td>JEFFSOL® GC</td>
</tr>
<tr>
<td>Glycols</td>
<td></td>
<td>MEG, DEG, TEG</td>
</tr>
<tr>
<td>Maleic Anhydride</td>
<td>Maleic Anhydride</td>
<td>Maleic Anhydride</td>
</tr>
<tr>
<td>Surfactants</td>
<td>Amphoteric</td>
<td>Alkyl Ampho (di) Acetates, Betaines</td>
</tr>
<tr>
<td></td>
<td>Cationic</td>
<td>Alkyl Dimethylamines, Quaternized Amine Ethoxylates, Quaternary Ammonium Compounds</td>
</tr>
<tr>
<td></td>
<td>Nonionic</td>
<td>Alkyl Polysaccharides, Alkylamine Ethoxylates, Amine Oxides, Block Copolymers, Alkoxy lates, Alkanolamides</td>
</tr>
<tr>
<td></td>
<td>Polymeric</td>
<td>Naphthalene Sulfonates</td>
</tr>
</tbody>
</table>
Drilling

Huntsman offers a range of specialty chemicals designed specifically for drilling applications:

<table>
<thead>
<tr>
<th>Applications</th>
<th>Chemistry</th>
<th>Huntsman Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleaning and Completion</td>
<td>Alkylpolysaccharide, Vegetable-based Surfactants, Extended Chain Surfactants</td>
<td>XTF 955, SURFONIC® VBS-D10, SURFONIC® OFE 201</td>
</tr>
<tr>
<td>Defoamer</td>
<td>Alcohol Alkoxylates</td>
<td>SURFONIC® LF Series, SURFONIC® P Series, SURFONIC® OFW 306</td>
</tr>
<tr>
<td>Dispersion Control</td>
<td>Polymeric</td>
<td>DEHSCOFIX® 108, 158</td>
</tr>
<tr>
<td>Emulsifiers</td>
<td>Amine-based Surfactants, Polymers, Fatty Alcohol Ethoxylates, Esters</td>
<td>SURFONIC® N Series, SURFONIC® OFE Series, SURFONIC® MW Series, SURFONIC® DA Series, NANSAs Series</td>
</tr>
<tr>
<td>Shale Inhibitors</td>
<td>Amine Blends, Alkoxylates</td>
<td>SURFONIC® OFS 124, OFS 500, OFS 600, OFS 781, L4-3</td>
</tr>
<tr>
<td>Viscosity Control</td>
<td>Polyols, Aminoethylpiperazine, Propylene Carbonate</td>
<td>SURFONIC® OFS 300, AEP, JEFSSOL® PC</td>
</tr>
<tr>
<td>Wetting Agents</td>
<td>Ethoxylates</td>
<td>SURFONIC® N Series</td>
</tr>
</tbody>
</table>

Components

- **JEFFSOL® Propylene Carbonate Solvent (PC)**
 Clay is often added to drilling muds for viscosity and dispersion control. Use of JEFFSOL® propylene carbonate solvent to activate hydrophobized clay greatly improves the effectiveness and ease of use of clay in such formulations. Typically, the propylene carbonate is added to the system after the clay has been added to the oil, but it is also possible to mix the propylene carbonate with the clay to form a premix prior to addition to the oil phase. (US Patent Application 20060148654 and US Patent 4,425,244).

Propylene carbonate is also an effective catalyst for the “water glass reaction,” where metal silicates are precipitated in a well bore to offer a durable shield against water-reactive shale when drilling with water-based muds. (US Patent 7,137,459).
SURFONIC® OFS 500 polyol is a cloud point glycol system useful for lubrication and as a shale anti-swelling agent for water-based drilling muds used in formations with reactive shales. The product functions as a partial potassium chloride (KCl) replacement in drilling formulations. It is possible to tune the performance of the SURFONIC® OFS 500 to the temperature and KCl salt concentration of the mud system. The product is registered on chemical inventories in many regions of the world. A separate bulletin further describing the use and benefits of SURFONIC® OFS 500 polyol is available upon request.

SURFONIC® OFS 300 additive is a high molecular weight polyglycol. It can also be used in water-based muds to build viscosity and to protect water-sensitive shale.

SURFONIC® MW-100 is an optimized emulsifier for vegetable oils. It can be used to formulate emulsion muds or as a cleaner to remove a vegetable oil-based mud from casing prior to cementing.

SURFONIC® OFE 243 and OFE 244 are polymeric surfactant emulsifiers for oil-based muds with an internal phase with electrolytes.

The SURFONIC® N Series nonylphenol ethoxylates and L Series alcohol ethoxylates are used in many applications, including as wetting agents and emulsifiers for paraffin dispersants, as emulsifiers in drilling muds and as primary surfactants for formulating microemulsions of d-limonene for cleaners.

NANSA® EVM Series surfactants, which are calcium salts of dodecylbenzene sulfonic acid (DDBSA), are often used in the formulation of emulsion muds.

XTF 951 is a polyglycerol drilling fluid additive for invert drilling applications. It can be used as the internal phase of a non-aqueous mud to minimize the shale swelling caused by a water internal phase. The product is also useful in lubricating the drilling mud to reduce “fretting.” XTF 951, which is water-soluble and considered to be of low toxicity, can act as a shale inhibitor in water-based muds as well.

Components, continued.

The reaction products of one of Huntsman’s ethylenamines — diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA) or Ethylenamine E 100, — with tall oil fatty acid and maleic anhydride or citric acid are widely used as emulsifiers for making invert (water-in-oil) emulsion muds. (US patent 4,663,076).
Huntsman offers a range of specialty chemicals for cementing applications.

<table>
<thead>
<tr>
<th>Application</th>
<th>Chemistry</th>
<th>Huntsman Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement Flow Enhancers</td>
<td>Naphthalene Sulfonate Formaldehyde</td>
<td>DEHSCOFIX® 108, 158</td>
</tr>
<tr>
<td>Curing Agents</td>
<td>Polyetheramines</td>
<td>JEFFAMINE® D, T Series</td>
</tr>
<tr>
<td>Dispersant</td>
<td>Polyetheramines</td>
<td>JEFFAMINE® M Series</td>
</tr>
<tr>
<td>Well Bore Cleanup</td>
<td>Extended chain surfactants, formulated detergents</td>
<td>SURFONIC® OFE 201, SURFONIC® VBS-D10</td>
</tr>
</tbody>
</table>

- **DEHSCOFIX® 108** dispersant and similar dispersant products in the DEHSCOFIX® naphthalene sulfonate formaldehyde condensate product line are effective water-reducing, cement flow-enhancing additives for the management of flow in a cementing operation.

- Epoxy formulations based on DGEBA resins and **JEFFAMINE®** curing agents are effective remedial cementing systems for correcting faults in a cementing job. Solvent-free, water-dispersible systems can be created by pre-reacting (or modifying) an epoxy resin with a mono-functional polyetheramine, such as JEFFAMINE® M 1000 or M 2070 amine, to form an epoxy adduct capable of emulsifying/dispersing the bulk of the epoxy resin.

- Primary epoxy curing agents such as JEFFAMINE® D 230, D 400 and T 403 polyetheramines, can then be mixed with the modified resin to create a slow-set epoxy formulation. (US Patent 5,049,411 and US Patent Application 20060234871).

- The ultra-low IFT provided by SURFONIC® OFE 201 allows well bore cleanup in high-brine completion fluids.

DEHSCOFIX® family of NSF cementing additives
Huntsman offers a range of specialty chemicals for production applications.

<table>
<thead>
<tr>
<th>Application</th>
<th>Chemistry</th>
<th>Huntsman Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion Inhibitors — Water Soluble</td>
<td>Quaternary Ammonium Compounds, Nonylphenol Ethoxylates</td>
<td>EMPIGEN® BAC, AS Series, TERIC® N Series, SURFONIC® N Series</td>
</tr>
<tr>
<td>Corrosion Inhibitors</td>
<td>Amine Intermediates, Amine Blends, Imidazoline, Phosphate Esters, Alkoxylated Fatty Amines, Quaternary Ammonium Compounds</td>
<td>Amine Derivatives, SURFONIC® EDA-4/80, SURFONIC® OFC 100, SURFONIC® PE Series, SURFONIC® T Series, EMPIGEN® BAC Series</td>
</tr>
<tr>
<td>Defoamers</td>
<td>Polyols, Fatty Alcohol Ethoxylates</td>
<td>SURFONIC® POA-17R2, SURFONIC® LF Series</td>
</tr>
<tr>
<td>Demulsifiers</td>
<td>Resin Alkoxylates, Polyetheramines, Polyols, Polyamines</td>
<td>SURFONIC® OFD Series, JEFFAMINE® Series, JEFFOX® WL Series</td>
</tr>
<tr>
<td>Cleaners/Degreasers</td>
<td>Alkylether Methyl Blends, Sulfonates, Linear Alkylbenzene Sulfonic Acid</td>
<td>SURFONIC® OFE 321, OFE 201, SURFONIC® VBS Series</td>
</tr>
<tr>
<td>Foamers</td>
<td>Alkyl Ether Sulfates, Alkyl Sulfates Betaines, Alpha Olefin Sulfonates</td>
<td>MARCHON® Series, EMPICOL® Series, EMPIGEN® BS, BB Series, NANSA® LSS Series</td>
</tr>
<tr>
<td>Hydrate Inhibitors</td>
<td>MEG, Quaternary Amines, Amine Blends</td>
<td>JEFF-FLOW® H Series</td>
</tr>
<tr>
<td>Paraffin and Asphaltene Control</td>
<td>Maleic-based Polymers, Ethoxylates, Alkylbenzene Sulfonates, Sulfonates</td>
<td>JEFF-FLOW® P Series, JEFF-FLOW® A Series, SURFONIC® L Series, SURFONIC® OFE 201</td>
</tr>
<tr>
<td>Scale Inhibitors</td>
<td>Phosphate Esters, Polyetheramines, Amine Phosphates</td>
<td>SURFONIC® PE Series, SURFONIC® EDA-4/80, SURFONIC® OFI Series</td>
</tr>
<tr>
<td>Specialized Solvents</td>
<td>Propylene Carbonate, Alcohol Ethoxylates, Glycol-based Solvents</td>
<td>JEFFSOL® PC, SURFONIC® L Series</td>
</tr>
<tr>
<td>Sulfur Scavengers</td>
<td>Triazines</td>
<td>XTA 793, XTA 797</td>
</tr>
<tr>
<td>Water Clarifiers</td>
<td>Polyamines, Polymers, Polysaccharides</td>
<td>SURFONIC® OFD 300, SURFONIC® NB Series, SURFONIC® PC Series, JEFFAMINE® M 1000, ECOTERIC® 7500</td>
</tr>
</tbody>
</table>
Huntsman’s ethylenamines, particularly aminoethylethanolamine (AEEA), diethylenetriamine (DETA) and triethylenetetramine (TETA), can be reacted with fatty acids to form imidazolines, which are used as corrosion inhibitors in oilfield applications.

Amidoamines made from tetraethylenpentamine (TEPA) and Ethyleneamine E 100 reacted with fatty acids are also popular corrosion inhibitors. These amidoamines can be further reacted with acrylic acid or maleic anhydride to form emulsifiers for drilling muds and corrosion inhibitors.

XTA 892 and SURFONIC® EDA-4/80 products are ethoxylated ethyleneamines that can be reacted with fatty acid anhydrides or mixed with acidic phosphate esters to form corrosion inhibitors for water- and oil-based systems. (US Patents 5,582,792; 5,391,636 and 3,514,251).

Methoxypropylamine (MOPA) provides for vapor phase or “top of line” corrosion protection.

Ethanolamines DEA and MDEA can be used for acid neutralization.

Amine C6 and Amine C8 are fairly strong amines, which are valuable for increasing alkalinity in corrosion inhibitor formulations. The amides are formed when reacted with fatty acids or phosphate esters. They also have some surfactant properties.

Phosphate esters derived from ethoxylated alcohols or alkylphenols can be formulated into corrosion inhibitors for high water-cut systems in the oilfield. (US Patents 5,611,992 and 3,510,436). SURFONIC® PE-1198LA and PE-2852 surfactants are products for consideration in this application. Amine C6 or Amine C8 can be used to neutralize the phosphate esters, giving some alkalinity and buffering to the formulation.

Alkoxylated fatty amines, like SURFONIC® T-2 surfactant, can be used to prevent corrosion and to thicken hydrochloric acid (HCl) in acidizing formulations. Generally, propargyl alcohol is used in combination with the surfactant for complete anti-corrosion protection.

Ethanolamine TEA can be used to make phosphates.
Effective scale inhibitors can be produced by reacting polyphosphoric acid with SURFONIC® EDA-4/80 ethoxylate or XTA 892. The resulting materials are effective in preventing calcium carbonate (CaCO₃), calcium sulfate (CaSO₄) and barium sulfate (BaSO₄) scale.

Amine C9 is another amine that can be used as a reactant to form this class of chemical. (US Patents 4,155,869 and 3,477,956). After reaction, the phosphates of the hydroxyamines are often formulated with isopropanol and acetic acid.

SURFONIC® PE-2852 phosphate ester can be used without further reaction as a scale inhibitor.

JEFF-FLOW® P 359, P 961, P 962, P 963, P 964 and P 965 polymers are pour point depressants for waxy crude oil. They work by modifying the crystal structure of paraffin in produced fluids.

In hot oiling applications, SURFONIC® N Series nonylphenol ethoxylates and NANSA® SSA alkylbenzene sulfonic acid are used to help penetrate and dissolve the wax during treatment.

Other paraffin dispersants can be formulated from solvent mixtures and surfactants. One example is a mix of Stoddard solvent with SURFONIC® L24-2 and L24-9 surfactants.

JEFF-FLOW® A 2524 surfactant is an oil-soluble asphaltene dispersant capable of both preventing precipitation of asphaltenes and redispersing previously settled agglomerations.

NANSA® SMA 118, SMA 122 and SMA 158 alkylaryl sulfonates, with side chains of intermediate length, are able to keep asphaltenes dispersed in crude oil and oil emulsions.

Amidoamines derived from Huntsman’s JEFF-FLOW® A 100 and A 300 and tall oil fatty acid (TOFA) have also been used as asphaltene dispersants, especially in systems where water is present.
The Huntsman demulsifier base can be grouped into four families:

<table>
<thead>
<tr>
<th>Anionic</th>
<th>Polyol</th>
<th>Oxyalkylated Polyamine</th>
<th>Polyetheramine</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURFONIC® OFD 750</td>
<td>SURFONIC® OFD 101</td>
<td>SURFONIC® OFD 150</td>
<td>JEFFAMINE® D 400</td>
</tr>
<tr>
<td>Nansa® SS25/A</td>
<td>SURFONIC® OFD 328</td>
<td>SURFONIC® OFD 300</td>
<td>JEFFAMINE® ED 900</td>
</tr>
<tr>
<td>Nansa® SM25/MXA</td>
<td>SURFONIC® OFD 335</td>
<td>SURFONIC® OFD 301</td>
<td>JEFFAMINE® ED 2003</td>
</tr>
<tr>
<td>SURFONIC® POA-17R2</td>
<td>SURFONIC® OFD 302</td>
<td>JEFFAMINE® M 2070</td>
<td></td>
</tr>
<tr>
<td>JEFFOX® WL 660</td>
<td>SURFONIC® OFD 360</td>
<td>JEFFAMINE® T 403</td>
<td></td>
</tr>
<tr>
<td>JEFFOX® WL 5000</td>
<td></td>
<td>JEFFAMINE® T 3000</td>
<td></td>
</tr>
</tbody>
</table>

Huntsman’s oilfield demulsifiers are effective components of demulsifier formulations. These materials should be formulated with other materials based on bottle field tests to create effective demulsifier formulations.

- **Anionic**: These products are resistant to over-treating. They offer solids wetting capability and can help destabilize emulsions containing fine particles. They do not drop water as quickly as other classes of demulsifiers.

- **Polyol**: The polyol demulsifiers are effective emulsion breakers and are available in a wide range of relative solubility number (RSN) values. Although high RSN value polyols may cause water clarity issues, such issues can normally be corrected with combinations of low RSN alkylphenol resin alkoxylates.

The polyol demulsifiers can give good emulsion breaking, but often need other materials to complete the separation of the water. SURFONIC® OFD 101 demulsifier is a diol, while SURFONIC® OFD 328 and OFD 335 demulsifiers are triols. SURFONIC® OFD 328 and 335 demulsifiers have found wide range applicability in Eastern European crudes.

- **Oxyalkylated Polyamine**: The oxyalkylated polyamine demulsifiers exhibit good emulsion-breaking characteristics. In most cases, they tend to be slow water-coalescing agents though, in some cases, water drop can be rapid. Some products in this class are good overall demulsifiers for heavy oils and oil sands production. In some crude oils, these materials have a water-shedding capability.

- **Polyetheramine**: The etheramines are used in treatment of microemulsions produced in enhanced oil recovery (EOR) activities. These hydrophobic amines interact with the EOR formulation components and shift the hydrophilic-lipophilic balance (HLB) of the system, destroying the microemulsion, which releases the oil and water into separate phases. The treatment rate and product selection must be done carefully to prevent undesirable conditions, such as oil dispersed in water.
Huntsman Performance Products - Energy SBU

Alternate energy - Lithium-ion batteries
Alternate energy - Solar
Alternate energy - Wind
Enhanced oil recovery
Gas treating
Oilfield chemicals

DISCOVER.
Mastering Molecular Science for Future Energy Solutions

www.huntsman.com/performance_products

Global headquarters
Huntsman Corporation
10003 Woodloch Forest Drive
The Woodlands, Texas, 77380
USA
Tel : +1-281-719-6000
Fax : +1-281-719-6055

South America
Huntsman Quimica Brasil Ltda.
Av. Prof. Vicente Rao, 90
Predio 122 - 2º andar
04636-000
São Paulo/SP
Brazil
Tel : +55-11-2393-2482

Asia Pacific
Huntsman Performance Products
150 Beach Road
#37-00 Gateway West
Singapore 189720
Tel : +65-6297-3363
Fax : +65-6296-3368

Australia
61 Market Road
Brooklyn
Victoria 3012, Australia
Tel : +61-3-9933-6696
Fax : +61-3-9933-6656

Europe, Africa and Middle East
Huntsman Performance Products
Everslaan 45
B-3078 Everberg
Belgium
Tel : 32-2-758-9211
Fax : 32-2-758-9112
Email: HPP_EAME_Oilfield@huntsman.com

Disclaimer
Huntsman Corporation warrants only that its products meet the specifications stated in the sales contract. Typical properties, where stated, are to be considered as representative of current production and should not be treated as specifications. While all the information presented in this document is believed to be reliable and to represent the best available data on these products, HUNTSMAN MAKES NO WARRANTY OR GUARANTEE OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF ANY THIRD PARTY, OR WARRANTIES AS TO QUALITY OR CORRESPONDENCE WITH PRIOR DESCRIPTION OR SAMPLE, AND ANY USER OF PRODUCTS DESCRIBED HEREIN SHOULD CONDUCT A SUFFICIENT INVESTIGATION TO ESTABLISH THE SUITABILITY OF ANY PRODUCT FOR ITS INTENDED USE AND ASSUMES ALL RISK AND LIABILITY WHATSOEVER RESULTING FROM THE USE OF SUCH PRODUCT, WHETHER USED SINGLY OR IN COMBINATION WITH OTHER SUBSTANCES. Products may be toxic and require special precautions in handling. For all products described herein, the user should obtain detailed information on toxicity, together with proper shipping, handling, and storage procedures, and should comply with all applicable safety and environmental standards. The behavior, hazards and/or toxicity of the products referred to in this publication in manufacturing processes and their suitability in any given end-use environment are dependent upon various conditions such as chemical compatibility, temperature, and other variables, which may not be known to Huntsman. It is the sole responsibility of the user of such products to evaluate the manufacturing circumstances and the final products under actual end-use requirements and to adequately advise and warn future purchasers and users thereof.

SURFONIC®, ECOTERIC®, MARCHON®, JEFFOX®, TERIO®, EMPGEN®, JEFF-FLOW®, JEFFAMINE®, JEFFSOL®, DEHSCOFIX® and NANSA® are registered trademarks of Huntsman Corporation or an affiliate thereof in one or more, but not all, countries.

Copyright © 2015 Huntsman Corporation or an affiliate thereof. All rights reserved.