Advanced Materials
Raising insulation performance with advanced chemistries

Quarter 2, 2012
Table of contents

<table>
<thead>
<tr>
<th>A broad portfolio - epoxy vs polyurethane</th>
<th>Epoxy systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compared properties</td>
<td>Polyurethane systems</td>
</tr>
<tr>
<td></td>
<td>Viscosity</td>
</tr>
<tr>
<td></td>
<td>Exothermic reaction</td>
</tr>
<tr>
<td></td>
<td>Chemical resistance</td>
</tr>
</tbody>
</table>
Epoxy systems

Chemistry

Main features and benefits

- Ambient and hot curing systems
- Long pot life, latency
- Excellent cross linking
- Excellent impregnation
- High voltage behavior on impregnated parts
- High Tg
- Thermal endurance, high temperature applications
- Long-term reliability
Polyurethane systems

Chemistry

Main features and benefits
- Flammability resistance
- Low viscosity and easy processing
- Low exothermic reaction and low shrinkage
- Reactivity can be easily adjusted
- Flexibility at medium and low temperatures
- Suitable for pressure sensitive devices
- Crack resistance
- Thermal cycling
- Casting of big volumes
- Good adhesion
- Lower cost of materials
Compared viscosity

Viscosity progression

- Mix viscosity (mPa·s)
- Gel time
- Time (min)

- Epoxy
- Polyurethane
Compared viscosity

Epoxy resins
- Higher viscosity ca. 10 000 - 16 000 mPa.s
- Reduction of viscosity through reactive diluents or plastisizer

PU systems
- Much lower viscosity of polyols << 10 000 mPa.s
- Low viscosity of standard MDI < 250 mPa.s
- Further dilution not required in most cases
- Low mix viscosity with excellent flowability
Compared exothermic reaction

Exotherm progression

Temperature (°C)

Time (min)

Epoxy
Polyurethane
Compared exothermic reaction

General rule for epoxy and polyurethane
- Exotherm of PU << EP systems
- Unfilled systems show stronger exothermic reaction
- Pot life of bigger quantities of reaction mix is lower
- Casting of big volumes preferably with PU
- PU’s are less sensitive towards crack formation
- The use of PU prepolymers provides additional reduction of the exotherm
- Exothermic reaction has an impact on shrinkage
Compared chemical resistance

Depends on
- Building blocks
- Crosslinking density and degree of conversion
- Hard systems show a better resistance than soft systems

General rule for epoxy and polyurethane
- Concentrated acid and base destroy the material
- Polar solvents damage the material
- Good resistance against diluted acid and bases, apolar solvents and fuel
- Aromatic solvents cause swelling of the material
Keep our products at your fingertips

View the brochure on SlideShare
With this brochure get an overview of our comprehensive range of insulation systems for electronics applications.

Download our mobile apps on your smartphone
With these apps select immediately the right:
- Araldite® industrial adhesive for your specific need
- Araldite® composite formulated system for your process / application
Access the product description or send us an email to request the technical data sheet.

Araldite® - Adhesives (Europe)
Download on iPhone | Android | BlackBerry

Huntsman - Composite resins (Europe)
Download on iPhone | Android | BlackBerry
For more information

www.huntsman.com/advanced_materials
advanced_materials@huntsman.com

Europe
Huntsman Advanced Materials (Switzerland) GmbH
Klybeckstrasse 200
P.O. Box - 4002 Basel
Switzerland
Tel. +41 61 299 20 41
Fax +41 61 299 20 40
Legal Disclaimer

Copyright © 2012 Huntsman Corporation or an affiliate thereof. All rights reserved.

The use of the symbol ® herein signifies the registration of the associated trademark in one or more, but not all, countries. While the information and recommendations included in this publication are, to the best of Huntsman's knowledge, accurate as of the date of publication, nothing contained herein is to be construed as a representation or warranty of any kind, express or implied.