Polymer Modification (Hydrophilic)
INTRODUCTION

Thermoplastic polymers such as polyamide, polyolefin or polyester are widely used for a variety of applications because of their good properties. One important characteristic of polyolefins is their hydrophobicity, which can be an advantage in many applications, but a disadvantage in others. The low surface energy of those polymers results in poor adhesion by coatings of all kinds – poor paintability, printability, and dyeability can cause problems in many applications. Low hydrophilicity can result in static problems as well.

Through grafting or copolymerization, ELASTAMINE® Polyetheramine based on PEG dominant backbone can improve the desired hydrophilicity, surface energy and polarity of thermoplastics.

FEATURES

• Increased surface energy
• Increased polarity
• Increased hydrophilicity

APPLICATIONS

(A) Use in Polyolefins

One chemical route to improvement of surface energy is grafting of a hydrophilic polymer onto the polyolefin. Use of an anhydride group as a linking point is a convenient approach – the availability of maleated polyolefins, and the reactivity of the anhydride group with amines, makes this a useful tactic, as long as the polyolefins and amines have suitable properties. Huntsman’s ELASTAMINE® family of polyetheramines includes hydrophilic monoamines that are well-suited to this purpose.

Chemistry

The utility of this concept has been proven with maleated polypropylene and ELASTAMINE® polyethermonoamines.

The reaction and product (amine-maleated polypropylene adduct, AMAPPA) are shown in diagram 1.

<table>
<thead>
<tr>
<th>Applications</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface modification of polyolefins</td>
<td>Improved paintability</td>
</tr>
<tr>
<td>Hydrophilic polyolefins</td>
<td>Improved dyeability</td>
</tr>
<tr>
<td>Colored plastics, fibers or films</td>
<td>Improved printability</td>
</tr>
<tr>
<td>Compatibilization of polymer alloys</td>
<td>Improved antistatic properties</td>
</tr>
<tr>
<td></td>
<td>Improved Interpolymer adhesion</td>
</tr>
</tbody>
</table>
Examples of application of this technology fall into two general categories:
1. Modification of the polyolefin to make the surface inherently more polar (paintable, printable, etc.),
2. Preparation of dispersions that can serve as primers for polyolefin surfaces to improve adhesion to coatings.

While polyolefin modification generally involves grafting of a polyetheramine onto a polyolefin backbone, modification of condensation polymers such as polyamides (nylons) usually is by including the polyetheramine as a comonomer. Incorporation of a polyetheramine in a thermoplastic polyester polymerization results in a polyesteramide that can have enhanced hydrophilicity-related properties.

B) Use in Polyamide

<table>
<thead>
<tr>
<th>Applications</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Modification of Polyamide with enhanced moisture wicking ability</td>
<td>• Amine end groups are much more reactive than alcohol end groups</td>
</tr>
<tr>
<td>• Water-soluble Nylon bags</td>
<td>• Improved hydrolysis resistance</td>
</tr>
<tr>
<td>• Modification of polyamide with increased Vapor permeability</td>
<td>• Flexibility from polyether backbone</td>
</tr>
<tr>
<td>• Compatibilization of polymer alloys</td>
<td>• Hydrophilicity, polarity and improved antistatic properties from polyethyleneglycol backbone</td>
</tr>
<tr>
<td></td>
<td>• Improved moisture transport in fiber and film applications</td>
</tr>
</tbody>
</table>
C) Use in Thermoplastic Polyester

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Backbone</th>
<th>Approx molecular weight</th>
<th>Functionality</th>
<th>Colour, Pt-Co</th>
<th>Water, wt%</th>
<th>Viscosity, cSt</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE-600</td>
<td>PEG (mostly)/PPG</td>
<td>600</td>
<td>Diamine</td>
<td>75 max</td>
<td>0.35 max</td>
<td>72 (20°C)</td>
</tr>
<tr>
<td>RE-900</td>
<td>PEG (mostly)/PPG</td>
<td>900</td>
<td>Diamine</td>
<td>100 max</td>
<td>0.35 max</td>
<td>119 (25°C)</td>
</tr>
<tr>
<td>RE1-1000</td>
<td>PEG (mostly)/PPG</td>
<td>1000</td>
<td>Monoamine</td>
<td>75 max</td>
<td>0.25 max</td>
<td>Room temp solid, mp ~30°C</td>
</tr>
<tr>
<td>RE1-2007</td>
<td>PEG (mostly)/PPG</td>
<td>2,000</td>
<td>Monoamine</td>
<td>75 max</td>
<td>0.25 max</td>
<td>283 (25 °C)</td>
</tr>
</tbody>
</table>

* Properties are for reference only. Please approach Huntsman Corporation for actual specifications.
Sales Offices

Australia
61 Market Road, Brooklyn, Victoria 3012, Australia
Tel: +61-3-9933-6696
Fax: +61-3-9933-6656

China
49F Maxdo Centre, 8 Xing Yi Road Shanghai 200336, P. R. China
Tel: +86-21-2325-7888
Fax: +86-21-2325-7908

India
B W, Wing, Light Hall building, Hiranandani Business Park, Opp. Linkway Honda Showroom, Saki Vihar Road, Chandivali, Mumbai - 400072
India
Tel: +91-22-4287-5100
Fax: +91-22-4287-5300 / 400

Japan
KIBC South Building, 6F, 5-5-2 Minatojima Minamimachi Chuo-ku, Kobe 650-0047 Japan
Tel: +81-78-304-3900
Fax: +81-78-304-3970

Korea
9th Floor, Dukmyung Building, 170-9 Samsung-dong, Gangnam-gu, Seoul 135090, Korea
Tel: +82-2-3404-6800
Fax: +82-2-556-3263

Singapore (SEA)
150 Beach Road
#37-00 Gateway West
Singapore 189720
Tel: +65 6297 3363
Fax: +65 6298 8606

Taiwan
No. 19, Industrial Third Road Kuan Yin Industrial District Taoyuan 32853, Taiwan
Tel: +886-3-483-8616
Fax: +886-3-483-6412

Global headquarters
Huntsman Corporation
10003 Woodloch Forest Drive
The Woodlands, Texas, 77380 USA
Tel: +1-281-719-6000
Fax: +1-281-719-6055

Asia Pacific
Huntsman Performance Products
150 Beach Road
#37-00 Gateway West
Singapore 189720
Tel: +65-6297-3363
Fax: +65-6296-3368

Europe, Middle East and Africa
Huntsman Performance Products
Everslaan 45
B-3078 Everberg
Belgium
Tel: +32-2-758-9544
Fax: +32-2-758-9946

www.huntsman.com/performance_products